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Received 9 October 2001 / Received in final form 8 March 2002
Published online 9 July 2002 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2002

Abstract. The currents and their fluctuations in two capacitively coupled single electron transistors are
determined in the limit of sequential tunnelling. Our considerations are restricted to the case when the
islands (dots) of the transistors are atomic–sized, which means each of them has only one single electronic
level available for the tunnelling processes. The Coulomb interactions of accumulated charges on the both
single electron transistors lead to the effect of the negative differential resistance. An enhancement of the
current shot–noise was also found. Spectral decomposition analysis indicated the two main contributions
to the shot–noise: low– and high–frequency fluctuations. It was found that the low frequency fluctuations
(polarization noise) are responsible for a strong enhancement of the current noise.

PACS. 73.23.Hk Coulomb blockade; single-electron tunnelling – 73.40.Gk Tunnelling –
73.50.Td Noise processes and phenomena

1 Introduction

Recent progresses in modern photolithography and self–
assembly techniques allows the fabrication of molecular–
scale tunnel junction devices [1]. The small size and low
power dissipation have stimulated a number of proposals
for their use in future generations of computation technol-
ogy, but until now few such circuits have been realised.

One of the most interesting type of tunnel junctions is
the single–electron transistor (SET). In electrical devices
consisting of two such structures connected in parallel,
one can observe the negative differential resistance effect
(NDR), which appears due to the Coulomb interaction
of charges accumulated on both dots [2]. The NDR phe-
nomenon is important in the case of potential applications
such as amplifiers, mixers, multipliers, logic and memory
elements, analog to digital converters and high–frequency
oscillator circuits.

A very important parameter, with regard to the po-
tential applications, is the noise to signal ratio. Besides
thermal and 1/f noise, a shot noise also appears in elec-
trical devices [3,4]. The shot noise analysis gives us ad-
ditional information about the dynamics of the system,
in particular about an electronic structure and electron–
electron correlation, which cannot be obtained by conduc-
tance measurements. Extensive research of the shot noise
in mesoscopic systems has been undertaken over the last
fifteen years. It was shown that a correlation between the
conducting electrons is responsible for the reduction of
the shot noise below the Poissonian value (for uncorre-
lated electron transmission) SPoisson = 2eI in quantum

a e-mail: grzechal@ifmpan.poznan.pl

point contacts, metallic diffusive conductors, chaotic cav-
ities and other devices (see review [4]). The reduction of
the shot noise in the single–electron transistor (SET) (up
to a value of (1/2)SPoisson) was confirmed experimentally
in 1995 [5]. In some cases however the shot noise can also
be much enhanced above the Poissonian value. In 1998,
super–Poissonian noise was measured in a resonant tun-
nelling diode in the NDR regime [6].

To the best our knowledge, there has been neither the-
oretical nor experimental work reported on the shot noise
in molecular–scale systems. Our purpose is to study the
negative differential resistance phenomenon and the shot
noise in such a system. As we will show, the NDR effect
appears due to the Coulomb interactions of charge accu-
mulated on both the transistors. We will also perform the
spectral decomposition analysis of the shot noise to find
processes, which are responsible for the super–Poissonian
type of the current noise.

The paper is organized as follows; the formalism used
for calculating the electric current, its fluctuation and
other characteristics of the system, will be described in
Section 2. In Section 3 we will present results of our cal-
culation, and a summary including the final remarks are
given in Section 4.

2 Description of the model

We consider a system, which is composed of two single
electron transistors (SETs) connected in parallel (Fig. 1),
with an atomic–sized spacer (dot). The crucial role in
the device plays the Coulomb interaction between charges
localized on both dots and the electrodes (dot–dot and
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Fig. 1. Schematic view of two capacitively coupled single–
electron transistors. Each dot α (α ∈ {t, b}) is connected to
two electrodes, labelled i (i ∈ {1, 2}). The dot–dot and dot–
electrode Coulomb interactions are modelled by the capaci-
tances Cint and Cαi, respectively. The tunnelling through the
junction αi depend on the resistance Rαi, while Nt (Nb) de-
notes the number of excess electrons on the top (bottom) dot.

dot–electrode interactions). To investigate this situation
we can introduce a simple formalism, based on the Hub-
bard model for the interaction of electrons in narrow en-
ergy bands [7]. The significant difference between the Hub-
bard Hamiltonian [7] and our model is related to the fact
that we neglect all quantum–mechanical correlation terms,
like exchange interactions, due to the limit of sequential
tunnelling. In this way, the system may be described by
the following Hamiltonian

H = Hdot +Hd−l +Hd−d , (1)

where Hdot represents electrons on the dots, whilst Hd−l
represents electrons in the electrodes and dot–electrode
Coulomb interactions, as well as electron tunnelling. The
last term Hd−d represents the Coulomb interaction be-
tween the dots. The dots’ HamiltonianHdot can be divided
into two parts

Hdot =
∑
α,σ

(εα − eV gα )c†ασcασ +
∑
α

Uαnα↑nα↓,

where c†ασ and cασ are the creation and annihilation op-
erators for an electron of spin projection σ ∈ { ↑, ↓} on
dot α ∈ {t, b}, and nασ = c†ασcασ is the number operator.
The first term describes electrons on the isolated dot with
level εα (shifted by the external gate voltage V gα ). The sec-
ond refers to the Coulomb interaction between electrons
of opposite spins on the same dot. The Hamiltonian

Hd−l =
∑
α,i,k,σ

[ξαik + eVαi]d
†
αikσdαikσ

+
∑
α,i,k,σ

Uαinασnαikσ+
∑
α,i,k,σ

(Tαic†ασdαikσ+h.c.)

consists of three parts. The first term describes the nonin-
teracting electrons in the electrodes, labelled by i ∈ {1, 2}.
d†αikσ (dαikσ) is the creation (annihilation) operator for the

electron with momentum k in the electrode i connected
to the dot α; ξαik denotes the electron energy, while eVαi
is the energy shift due to the applied voltage Vαi (see
Fig. 1). The Coulomb interaction between electrode i and
the dot α is represented by the term with parameter Uαi,
whilst the tunnelling of the electron through the junction
is described by the third part. The matrix elements Tαi
are assumed to be independent of spin and momentum.
The Coulomb interaction between electrons localized on
different dots is described by the term

Hd−d = Ud−d
∑
σ,σ′

ntσnbσ′ .

In general, the currents, which flow through the sys-
tem, can be calculated using the quantum–mechanical or
the semiclassical approach. To calculate the currents in
the quantum regime, one should solve simultaneously a
quantum kinetic equation and the Poisson equation [8].
The quantum kinetic equation allows us to compute di-
rectly the energy distribution of carriers and obtain any
other quantity such as the electron density or the current
density anywhere within the device. The Poisson equation
describes the electrostatic potential due to any charge im-
balance within the sample, which accounts for electron–
electron interactions in the Hartree approximation. Ac-
cording to the solving procedure described in detail by
McLennan et al. [8], one has to obtain the equilibrium
conduction–band diagram, solving the Poisson equation
for the electrostatic potential self–consistently with the
equilibrium electron density. After that one should solve
the transport equation with the boundary conditions im-
posed at the contact regions, and then the correction for
the electrostatic potential (again from Poisson equation).
In general, the correction (due to the charge imbalance
arising under bias, together with the associated screening
charges) influences the solution of the transport problem.
This means that we should iterate between the last two
steps until convergence is achieved. It is clearly seen that
the calculations in this approach are very difficult and
require knowledge of the particular parameters of the sys-
tem, such as the geometry and the symmetry of the molec-
ular orbital or dot–electrode connection. Fortunately, to
describe sequential tunnelling processes and the Coulomb
blockade effect, only information about the occupation of
the dot is necessary, while the question of how the electron
has tunnelled is less important. That is why we propose a
simpler, semiclassical, description of the system, in which
we include all important electron–electron interactions.

In the model proposed by Hubbard [7], the energy of
the on–site Coulomb interaction (∼10 eV) is much larger
than the energy of any other. However, in the case of a
quantum dot, the interactions are significantly smaller, be-
cause of the screening effect, which are of the order of the
charging energy of the isolated dot Ech = (1/2)e2/Co '
(1/2)Uα, where Co is the capacitance of the single, iso-
lated dot. For example, the charging energy of an isolated
sphere depends on its diameter r, Ech = e2/4πεor (i.e.
Ech ≈ 140 meV for r ≈ 10 nm, while Ech ≈ 2 eV
for r ≈ 8 Å). The other interaction energies Uαi and
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Ud−d correspond to the electrostatic energies (1/2)e2/Cαi
and (1/2)e2/Cint (where Cαi denotes the effective dot–
electrode capacitance, while Cint is the capacitance be-
tween dots), respectively. One can see, that the effective
charging energy of the dot connected to the electrodes is
smaller, e.g. Ech ≈ 50− 100 µeV for the Co dot 14 nm ×
150 nm × 2.5 µm [9], Ech ≈ 6− 40 meV for an Al dot of
less than 10 nm in diameter [10] and Ech ≈ 0.35 eV for a
molecule of C60 (diameter ∼8 Å) [11].

In our calculation, we assume, that the interaction en-
ergy Uα (and corresponding charging energy of the iso-
lated dot) is greater than Uαi, Ud−d and the thermal en-
ergy kBT . It means, that for small voltage drops there can
be only one additional electron on each dot and we may
neglect the second term in the Hamiltonian Hdot. This
assumption significantly simplifies the calculation of the
electronic transport and the shot noise, and allows under-
standing of the physical phenomena, which occur in the
system. Additionally, we can restrict our consideration to
simply the elastic tunnelling processes (we have to neglect
the energy dissipation on the dots, which is usually as-
sumed in the SET containing a large metallic dot [12–14]),
and also neglect fluctuations of the electronic levels εα,
which can be caused by thermal and electrostatic fluctu-
ations of the environment.

Since we have neglected the dissipative processes on
the dot and consider the ideal electrodes, the localized
voltage drops occur only on the tunnel barriers, which we
have modelled by the resistances Rαi. Assuming V gt =
V gb = Vt1 = 0 and Cgt = Cgb = 0 (the case 6= 0 we leave
for future investigation), from Kirchhoff’s laws, one can
obtain

V dropt1 =
Ct2Cb
C2

Vt2 +
Cb1Cint
C2

Vb1 +
Cb2Cint
C2

Vb2

−2Ect
e
Nt −

2Ecint
e

Nb, (2)

V dropt2 = Vt2 − V dropt1 , (3)

V dropb1 =
Ct2Cint
C2

Vt2 +
C2
int − Cb2Ct − CintCt

C2
Vb1

+
Cb2Ct
C2

Vb2 −
2Ecint
e

Nt −
2Ecb
e
Nb , (4)

V dropb2 = Vb2 − V dropb1 − Vb1 , (5)

where Cαi is the capacitance of the junction between the
dot α and the electrode i, Cα = Cα1 + Cα2 + Cint (α =
{t, b}), C2 = CtCb−C2

int, and Ecα is the charging energy of

the dot α: Ect =
e2Cb
2C2

, Ecb =
e2Ct
2C2

. Ecint =
e2Cint
2C2

rep-
resents the dot–dot interaction energy, Vt2 denotes the
bias voltage in the top SET, Vb2−Vb1 is the bias in the bot-
tom SET, while −e (e > 0) and T stand for the electron
charge and the temperature, respectively.

Tunnelling processes for an electron in the top (α = t)
and the bottom (α = b) SET through the left (i = 1)
and the right (i = 2) junctions, are described by the net
tunnelling rates

γαi ∼
1

Rαie2
=

2π
~
DαDαi|Tαi|2,

which depend on the tunnel matrix elements Tαi and a
density of states at the Fermi level on the dot α (Dα), and
in the electrode i (Dαi). The processes are assumed to be
small, such that ~γαi � kBT . This relation implies that
the corresponding tunnel resistances Rαi are much larger
than the quantum resistance RQ = h/2e2 and the elec-
tronic transport is dominated by incoherent, sequential
tunnelling processes [13,15], whereas higher–order tun-
nelling processes (cotunnelling) are neglected. Therefore,
one can describe the electronic transport through the sys-
tem introducing the following master equation:

d
dt
p(Nt, Nb; t) = A(Nt, Nb)p(Nt, Nb; t)

+
∑
α=t,b

B+
α (Nt, Nb)p(Nt + δtα, Nb + δbα)

+
∑
α=t,b

B−α (Nt, Nb)p(Nt − δtα, Nb − δbα), (6)

where δtα, δbα are the Kronecker’s deltas,

A(Nt, Nb) = −
∑
r=±

∑
α=t,b

∑
i=1,2

Γ rαi(Nt, Nb), (7)

B±i (Nt, Nb) =
∑
i=1,2

Γ±αi(Nt ± δtα, Nb ± δbα) , (8)

and p(Nt, Nb; t) denotes the probability to find Nt = 0, 1
excess electrons on the top dot and Nb = 0, 1 excess elec-
trons on the bottom one. The effective tunnelling rates
for electrons in the top and the bottom SET, tunnelling
to (+) and from (−) the particle level εα through the junc-
tion αi, are given by

Γ±αi(Nt, Nb) = γαif
±
αi(Nt, Nb) , (9)

where the distribution function

f±αi(Nt, Nb) =[
1 + exp

(
± εα − eV

drop
αi (Nt, Nb)∓Ecα −EF

kBT

)]−1

(10)

and EF denotes the Fermi energy.
The effective tunnelling rates Γ±αi(Nt, Nb) and the

probabilities p(Nt, Nb, t) determine the tunnelling cur-
rents Iαi. In the stationary state

Iαi = −e
∑
Nt,Nb

(−1)i

×
[
Γ+
αi(Nt, Nb)− Γ−αi(Nt, Nb)

]
p0(Nt, Nb), (11)

where the probability p0(Nt, Nb) is calculated from the
master equation (6) with the left hand side equal to zero.
In the steady state, one can also determine the average
value of any physical quantity X

〈X〉 =
∑
Nt,Nb

X(Nt, Nb)p0(Nt, Nb), (12)
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where X(Nt, Nb) is the representation of X in the two–
dimensional space of states {(Nt, Nb)}.

To analyze fluctuations in the system we extend
the generation–recombination approach [16] for multi–
electron channels by a generalization of the method de-
veloped for spinless electrons in a SET [17–21]. The time
correlation function of the quantities X and Y can be
expressed as

〈X(t)Y (0)〉 =
∑

N ′t,N
′
b;Nt,Nb

X(N ′t, N
′
b)

× P (N ′t, N
′
b; t|Nt, Nb; 0)Y (Nt, Nb) p0(Nt, Nb). (13)

Here, P (N ′t, N
′
b; t|Nt, Nb; 0) is the conditional probability

to find the system in the final state with N ′t and N ′b excess
electrons at time t, if there wereNt andNb excess electrons
at the initial time t = 0. This probability is determined
from the equation (written in the matrix form)

dP̂
dt

= M̂P̂ (14)

for the time evolution of the conditional probability
P (N ′t, N ′b; t|Nt, Nb; 0). The tunnel matrix M̂ results from
the master equation (6) and depends on Γ±αi(Nt, Nb).
In calculation of the current–current correlation func-
tions, one has to include the self–correlation terms as
well [17–21]. According to this procedure the Fourier
transform of the charge–charge SNN and polarization–
polarization SPP correlation functions are given by

SNN
(PP)

(ω) = 4
∑

N ′t,N
′
b;Nt,Nb

(N ′t ±N ′b)

×Re
[

1

iω1̂− M̂

]
N ′t,N

′
b;Nt,Nb

(Nt ±Nb)p0(Nt, Nb) , (15)

while the current–current correlation function is

SIαiIβj (ω) = δαβδijS
Sch
Iαi + ScIαiIβj (ω), (16)

where δαβ , δij are the Kronecker’s deltas, the Schottky
value (the frequency independent part) is given by

SSchIαi =2e2
∑
Nt,Nb

[
Γ+
αi(Nt, Nb)+Γ

−
αi(Nt, Nb)

]
p0(Nt, Nb),

(17)

and the frequency dependent part has the following form

ScIαiIβj (ω) = 4e2
∑

N ′t,N
′
b;Nt,Nb

(−1)i+j

×
[
Γ+
αi(N

′
t, N

′
b)− Γ−αi(N ′t, N ′b)

]
Re
[

1

iω1̂− M̂

]
N ′t,N

′
b;Nt,Nb

×
[
Γ+
βj(Nt − δtβ , Nb − δbβ)p0(Nt − δtβ , Nb − δbβ)

−Γ−βj(Nt + δtβ , Nb + δbβ)p0(Nt + δtβ , Nb + δbβ)
]
. (18)

Fig. 2. Voltage dependence of the probability p0(Nt, Nb). The
parameters are: Ct1 = 0.4 aF , Ct2 = 0.2 aF , Cb1 = 0.15 aF ,
Cb2 = 0.25 aF , Cint = 0.5 aF , Cgα=0, εt = 0.5|E0 − EF |,
εb = |E0 − EF |, kBT = 0.01|E0 − EF |, γt1 = γ0, γt2 = 0.5γ0,
γb1 = 0.8γ0, γb2 = 0.1γ0, V gα = Vb1 = Vb2 = 0 and Vt2 = Vb2 =
V . γ0 is taken as unity in our calculations.

3 Results

3.1 Stationary processes

To characterize the system in the stationary state, we
have numerically calculated the bias voltage dependence
of the current It = It1 = It2 (Ib = Ib1 = Ib2) flowing
through the top (bottom) SET and the average charge
accumulated on each dot, 〈Nt〉 and 〈Nb〉. In our model
the system can be found in one of the four charge states:
{(Nt, Nb)} = {(0, 0), (0, 1), (1, 0), (1, 1)}. One can see from
Figure 2, that for small voltages, the probability p0(0, 0),
that the both dots are empty (i.e. without additional elec-
trons) is equal to one, and currents cannot flow through
the system (Fig. 3). This is the so–called Coulomb block-
ade effect. Currents can flow through the system only
above some threshold voltages V th, which are different
for both transistors (see Fig. 3):

V tht =
C2

Ct2Cb + Cb2Cint

(
1
2
Ect + εt

)
, (19)

V thb =
C2

Cb2Ct + Ct2Cint

(
1
2
Ecb + εb

)
. (20)

When the voltage Vt2 exceeds the threshold voltage V tht ,
then the current It begins to flow through the top tran-
sistor. The probability to find an electron on the top dot
p0(1, 0) rises, while the probability to find an electron on
the bottom dot p0(0, 1) = 0 (see Fig. 2). Each the curves
in Figures 3a and b have steps, which result from open-
ing new charge channels, (Nt, Nb). These steps are seen
clearly only for low temperatures, when the charging en-
ergy Ecα is much larger than the thermal energy kBT . For
higher temperatures they are smeared out. The amplitude
of the currents depend on the tunnelling rates γαi. When
the voltage Vb2 exceeds the threshold voltage V thb , then
the current Ib begins to flow also through the bottom dot
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Fig. 3. Current through the top (solid line) and the bottom
(dashed line) SET’s (a), charge accumulation (b). The param-
eters are the same as those in Figure 2.

(Fig. 3). In the case of the tunnelling rate γb2 � γb1,
it may lead to quite a large charge accumulation on the
bottom dot. If the interaction between the transistors is
large (i.e. for Cint ≥ Cαi), the charge accumulated on
the bottom transistor (Fig. 3b) blocks the current chan-
nel through the top SET. In effect, a reduction of the cur-
rent It is obtained (area II in Fig. 3a). Since we restrict
our consideration to the low temperatures, the distribu-
tion functions f±αi (from Eq. (10)) are close to zero, or to
one, for the plateau, and a drop in the current, It, can be
calculated analytically. We have derived formulae for the
currents flowing through the top (bottom) SET, in the
first (IIt ) and the second (IIIα ) plateau regions:

IIt = e
γt1γt2
γt1 + γt2

, (21)

IIIt = e
γt1γt2γb2

γt1γb2 + γt2(γb1 + γb2)
, (22)

IIIb = e
γt2γb1γb2

γt1γb2 + γt2(γb1 + γb2)
· (23)

Hence, we can quantitatively describe the NDR phe-
nomenon (solid line in Fig. 3) by the ratio

NDR =
IIt − IIIt
IIIt

=
γb1γt2

(γt1 + γt2)γb2
· (24)

The largest value of the NDR effect appears for a large
asymmetry between the tunnelling rates γb2 � γb1, when
the charge accumulation on the bottom dot is large
(Fig. 3b).

The results presented in Figures 2 and 3 were calcu-
lated in a particular case, when the bias voltage in the
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Fig. 4. The contour plot of the current flowing through the
top SET It as a function of Vt2 and Vb2. The parameters are
the same as those in Figure 2.

bottom transistor was the same as the bias voltage in the
top one. In general, however, the voltage drops can be
changed independently. The current It in the top SET
as a function of both the voltage drops, through the top
and the bottom transistors, is plotted in Figure 4. Darker
(brighter) regions correspond to a larger (smaller) value
of the tunnelling current. One can see, that the voltage
Vb2 controls the threshold voltage V tht and the value of
the current in the top transistor, It. The Vb2 can also de-
termine the voltages, for which the NDR effect appears.
For example, if one follows the dashed line in Figure 4, i.e.
when the relation Vb2 = 1.75Vt2 is fulfilled, then the NDR
effect occurs twice. Here it is worth noting, that double
NDR is an important phenomenon, because it allows the
building of three–state switches.

3.2 Fluctuation and noise

To characterize the dynamics of the system we performed
analysis of the charge and the current noises versus the
bias voltage and the frequency.

The total charge noise SNN(ω = 0) for N = Nt +Nb,
and the polarization noise SPP (ω = 0) for P = Nt − Nb
versus voltage are plotted in Figure 5. The characteristics
are calculated using formula (15). The correlation func-
tions SNN (0) and SPP (0) are step–like, similarly to the
characteristics in the steady state. Changes of the value
of the charge and the polarization noises correspond to
opening a new charge state (compare Fig. 2 and Fig. 5).
Moreover, comparison between Figure 3b and Figure 5
shows that the total charge noise, SNN (0), increases with
the increase of the charge accumulation on the top dot. For
the top SET, the polarization noise SPP (0) is enhanced in
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Fig. 5. Charge noise – SNN (solid line) and polarization noise
– SPP (dashed line). The parameters are the same as those in
Figure 2.

the NDR and the second plateau regions, while the charge
noise SNN(0) is decreased. The polarization fluctuations
SPP (0) induced in the NDR and the second plateau re-
gions are one order of magnitude larger than the ampli-
tude of the charge noise SNN (0). However, outside the
NDR region, the noise amplitudes are comparable.

The results of numerical calculations of the Fano fac-
tors defined as the quotient of the zero frequency current
noise and the Poissonian noise SPoisson = 2eIα:

FIαiIβj =
SIαiIβj (0)

2eIα
, (25)

are presented in Figure 6. In general, the shot noise is
suppressed below the Poissonian value due to the nega-
tive correlations between tunnelling electrons, which are
generated by Coulomb interactions (the Coulomb block-
ade effect) [5,17–19].

In the NDR and the second plateau regions (solid line
for the top transistor) the zero–frequency current noise
is approximately twice as large as the Poissonian noise
SPoisson. An enhancement of the current noise was re-
cently observed in resonant tunnelling diodes by Iannac-
cone et al. [6]. The enhancement in the resonant tunnelling
diodes is obtained because of a shift of the density of states
in the well due to electron tunnelling. In our system, how-
ever, the nature of the NDR and the enhancement of the
shot noise is different.

The current noise in each tunnel junction is the sum
of two terms: the frequency independent Schottky noise
(Eq. (17)) and the frequency dependent noise (Eq. (18)).
For the top transistor, both parts are plotted in Figure 7.
The Schottky noise is enhanced at the threshold volt-
age V tht . Such behavior is the result of frequent tunnelling
of electrons to and from the dot through the less resis-
tive junction (in our case it is the junction t1) of the top
SET. The analogous process appears in the bottom SET
at threshold voltage V thb . The frequency dependent part
is negative for ω = 0. It results from the aforementioned
negative correlations between successive tunnelling events
and is due to the Coulomb interactions between elec-
trons. Since the Coulomb blockade effect predominates,
the current noise is decreased below the Poissonian value
SPoisson = 2eI (Fig. 6). However, in the NDR and the sec-

Fig. 6. Fano factor for the top (solid line) and the bottom
(dashed line) transistor. The parameters are the same as those
in Figure 2.

Fig. 7. Contributions to the Fano factor FIt1It1 : Schottky noise
(solid line) and frequency dependent part (dashed line). The
parameters are the same as those in Figure 2.

ond plateau regions, the Fano factors of both coefficients
of the current noise are approximately equal to unity and
therefore the current noise is super–Poissonian. Since the
Fano factor of the Schottky noise is constant (excluding
voltages close to V thα ), one can say that the frequency de-
pendent part is responsible for the enhancement of the
shot noise.

For voltages related to the second (II) plateau (e.g.
V ≈ 3.8|E0 − EF |/e), we have found analytical formulae
for the current noise SIαiIβj (ω) (Eq. (16)). The Schottky
value SSchαi (Eq. (17)) can be rewritten as

SSchαi = 2eIα = 2e2 γα1γt2γb2
γt1γb2 + γt2(γb1 + γb2)

· (26)

In order to analyze the frequency dependence of the
shot noise we perform spectral decomposition. The cor-
relation functions ScIαiIβj (ω) (as well as SNN (ω) and
SPP (ω)) can be expressed as the sum of the components
ScIαiIβj (λ) (SNN (λ), SPP (λ)) in the representation of the

eigenvalues λ of the tunnel matrix M̂ . Each eigenvalue λ
corresponds to the relaxation time τ = −1/λ. The voltage
dependencies of all eigenvalues λ are plotted in Figure 8.
Three of them (λ−, λ+ and λ4) are negative, whilst the
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Fig. 8. Voltage dependence of the eigenvalues λ of the ma-

trix cM . The parameters are the same as those in Figure 2.

fourth is equal to zero (λ1 = 0) and corresponds to the
stationary solution of the master equation (6). The eigen-
values λ are non–degenerate. In addition, we have found
that only terms corresponding to the two eigenvalues λ−
and λ+ are important. The amplitudes of the SNN (λ4),
SPP (λ4) and ScIαiIβj (λ4) are exponentially small (in com-
parison with the other terms) and can be omitted. We
have derived the eigenvalues λ± of the matrix M̂ in the
second plateau region:

λ± =
1
2

(
−γ ±

√
γ2 − 4[γt1γb2 − γt2(γb1 + γb2)]

)
, (27)

where γ = γt1 + γt2 + γb1 + γb2. After spectral decomposi-
tion, the noise ScIαiIβj (ω) (Eq. (18)) takes on the following
form:

ScIαiIβj (ω) =
2eIα

λ2
− − λ2

+

∑
r=±

r
aαi,βj + bαi,βjλ

2
r

ω2 + λ2
r

, (28)

where coefficients aαi,βj and bαi,βj depend only on
the tunnelling rates γαi and can be calculated from
equation (18):

at1,t1 = at2,t2 = −2γt1γt2(γ2
b2 + γb1γb2 − γt2γb1) ,

bt1,t1 = bt2,t2 = 2γt1γt2,

at2,b2 = ab2,t2 = −γ2
t2γ

2
b1 + γb1γ

2
b2(γt2 − γt1),

+γb1γb2γt2(γt1 + γt2 + γb1),

bt2,b2 = bb2,t2 = −(γb2 + γt2)γb1,

at1,t2 = at2,t1 = 2γb2γ2
t2γb1 + γ2

t2γb1(γb1 + 2γt1),

+γ2
b2(γ2

t2 + γ2
t1) ,

bt1,t2 = bt2,t1 = −γ2
t2 − γt1γb1 − γ2

t1,

at2,b1 = ab1,t2 = γ2
t2γ

2
b1 − γ2

b2γb1(γt2 − γb1),

−γt2γb1γb2(γt1 + γt2 + γb1),

bt2,b1 = bb1,t2 = −γb1(γt1 + γb1). (29)

From equations (29) one can see that the current shot
noise (Fano factor) depends only on the tunnelling rates
γαi. The capacitances of the system are not important.

Fig. 9. (a) Fano factor of the current noise ScIt1It1(ω), (b) total
charge noise SNN and (c) polarization noise SPP as a function
of the frequency ω/γ0. Thin vertical lines denote values of λ±
for the voltages V = 3.0 (dotted line) and V = 3.8 (solid
line).The parameters are the same as those in Figure 2.

This result is true only for low temperatures, when the
plateau can be clearly seen.

In the limit of low frequency, the shot noise (Eq. (28))
has a simpler form:

ScIαiIβj (0) = 2eIα
aαi,βj
λ2
−λ

2
+

· (30)

An analysis of equation (30) leads us to the conclusion
that the zero frequency current noise SIαiIβj (0) depends
only on the coefficient aαi,βj , and can be either super– or
sub–Poissonian. For example the shot noise SIt1It1(0) is
enhanced above the Poissonian value under the condition

that the tunnelling rate γt2 > γb2 +
γ2
b2

γb1
(from at1t1 > 0,

see Eq. (29)). On the other hand, the noise is suppressed
below the Poissonian value even in the NDR region.

In Figure 9a, we illustrate the change of the fre-
quency dependent shot noise (ScIt1It1(0)) whilst going from
the first to the second plateau. The thin vertical lines
denote the characteristic frequencies λ± of the system,
which correspond to the extreme slope of the ScIt1It1(ω)



128 The European Physical Journal B

for the voltages V = 3.0|E0 − EF |/e (dotted line) and
V = 3.8|E0 − EF |/e (solid line). The power spectrum
of the current noise ScIt1It1(ω) (for V = 3.47, 3.5, 3.8
in units |E0 − EF |/e) is positive in the low–frequency
regime and negative for higher frequencies. The curves
ScIt1It1(ω) (Fig. 9a) are the sum of the two Lorentzian
lines, say Sc−It1It1(ω) and Sc+It1It1(ω), with different relax-
ation times τ− = −1/λ− and τ+ = −1/λ+, respectively.
The high–frequency component Sc−It1It1(ω) is negative. It
is responsible for the negative correlation in the current
noise ScIt1It1(ω) (Fig. 9a). When we are going from the
first to the second plateau, then the low–frequency noise
ScIt1It1(ω) increases (Fig. 9a). We have found that the en-
hancement is due to the activation of the amplitude of the
noise Sc+It1It1(ω) corresponding to the eigenvalue λ+.

The results for the charge noise are presented in Fig-
ure 9b. The noise disappears at high frequencies. The
charge correlations corresponding to the eigenvalues λ−
and to the shorter relaxation time τ−, play dominant roles
for the voltages besides NDR and the second plateau re-
gions. One can say that the total charge noise SNN (ω) is
dominated by high frequency tunnelling processes through
the junctions of the system.

In the polarization noise, the crucial roles are the pro-
cesses with the characteristic relaxation time τ+, corre-
sponding to the slow polarization fluctuations (Fig. 9c).
In the NDR and the second plateau regions, the polar-
ization fluctuations are enhanced, their amplitude is ap-
proximately two orders of magnitude larger than the am-
plitude of the total charge noise. Comparisons between
Figures 9a, b and c shows that the polarization noise dom-
inated by the low frequency process is responsible for the
enhancement of the current noise in the NDR and the sec-
ond plateau regions. In other words, the current shot noise
is super–Poissonian due to the activation of low–frequency
fluctuations of the polarization.

4 Final remarks

We have performed theoretical analysis of the steady state
transport properties and the shot noise, in the system
with two molecular–size SETs connected in parallel. Usu-
ally, the opening of new charge channels in the SET leads
to current increase; however, in some cases the Coulomb
blockade effect can decrease the tunnel currents. In our
system, when the coupling is strong, the Coulomb inter-
actions between charges accumulated on both dots are re-
sponsible for the NDR phenomenon.

It is well known, that the Coulomb blockade effect in
SET’s is responsible for the reduction of the current noise
up to 1/2 of the Poissonian value. We have shown, how-
ever, that interactions between two SETs can also lead to
the enhancement of the current noise above the Poissonian
value. The spectral analysis of the shot noise shows two
main contributions to the current noise: low–frequency

polarization fluctuations and high–frequency charge fluc-
tuations. The activation of the polarization noise is re-
sponsible for the enhancement of the current noise above
the Poissonian value.

Electronic transport measurements concern the sta-
tionary currents only [2], and we believe that the power
spectrum studies will also be undertaken and will verify
our theoretical predictions.

The work in this paper was supported by the State Committee
for Scientific Research in the Republic of Poland under Grant
No. 2 P03B 087 19.
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